В чем состоит принцип суперпозиции полей. Способы расчета электрических полей. Принцип суперпозиции. Поля в вакууме

Электростатическое поле - поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Так как , то

где - проекция вектора на нормаль и к поверхности dS.

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

    результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

    Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

    Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .

    Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Основная задача из раздела электростатики формулируется таким образом: по заданным распределению в пространстве и величине (источников поля) определить значение вектора напряженности Е во всех точках поля. Решение этой задачи возможно на основе такого понятия как принцип суперпозиции электрических полей (принцип независимости действия электрических полей): напряженность какого-либо электрического поля системы зарядов будет равняться геометрической сумме напряженности полей, которые создаются каждым из зарядов.

где Ei - напряженность в определенной точке пространства поля, создаваемого одним i-м зарядом системы, а n - суммарное число дискертных зарядов, которые входят в состав системы.

Пример решения задачи, в основу которого положен электрических полей. Так для определения напряженности электростатического поля, которое создается в вакууме неподвижными точечными зарядами q₁, q₂, …, qn, используем формулу:

E = (1/4πε₀) Σ (qi/r³i)ri

где ri - радиус-вектор, проведенный из точечного заряда qi в рассматриваемую точку поля.

Приведем еще один пример. Определение напряженности электростатического поля, которое создается в вакууме электрическим диполем.

Система из двух одинаковых по абсолютной величине и, при этом, противоположных по знаку зарядов q>0 и -q, расстояние I между которыми относительно мало в сравнении с расстоянием рассматриваемых точек. Плечом диполя будет называться вектор l, который направлен по оси диполя к положительному заряду от отрицательного и численно равен расстоянию I между ними. Вектор pₑ = ql - электрический момент диполя (дипольный электрический момент).

Напряженность Е поля диполя в любой точке:

Е = Е₊ + Е₋,

где Е₊ и Е₋ являются напряженностями полей электрических зарядов q и -q.

Таким образом, в точке А, которая расположена на оси диполя, напряженность поля диполя в вакууме будет равна

E = (1/4πε₀)(2pₑ/r³)

В точке В, которая расположена на перпендикуляре, восстановленном к оси диполя из его середины:

E = (1/4πε₀)(pₑ/r³)

В произвольной точке М, достаточно удаленной от диполя (r≥l), модуль напряженности его поля равен

E = (1/4πε₀)(pₑ/r³)√3cosϑ + 1

Кроме того, принцип суперпозиции электрических полей состоит из двух утверждений:

  1. Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел.
  2. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F₁, F₂, …, Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил:
    F = F₁ + F₂ + … + Fn.

Таким образом, принцип суперпозиции электрических полей позволяет прийти к одному важному утверждению.

Как известно, справедлив не только для точечных масс, но и для шаров со сферически-симметричным распределением массы (в частности, для шара и точечной массы); тогда r — расстояние между центрами шаров (от точечной массы до центра шара). Этот факт вытекает из математической формы закона всемирного тяготении и принципа суперпозиции.

Поскольку формула имеет ту же структуру, что и закон всемирного тяготения, и для кулоновской силы также выполнен принцип суперпозиции полей, можно сделать аналогичный вывод: по закону Кулона будут взаимодействовать два заряженных шара (точечный заряд с шаром) при условии, что шары имеют сферически-симметричное распределение заряда; величина r в таком случае будет расстоянием между центрами шаров (от точечного заряда до шара).

Именно поэтому напряжённость поля заряженного шара окажется вне шара такой же, как и у точечного заряда.

Но в электростатике, в отличие от гравитации, с таким понятием, как суперпозиция полей, надо быть осторожным. Например, при сближении положительно заряженных металлических шаров сферическая симметрия нарушится: положительные заряды, взаимно отталкиваясь, будут стремиться к наиболее удалённым друг от друга участкам шаров (центры положительных зарядов будут находиться дальше друг от друга, чем центры шаров). Поэтому сила отталкивания шаров в данном случае будет меньше того значения, которое получится из закона Кулона при подстановке вместо r расстояния между центрами.

Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов q 1 , q 2 , ..., Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. §6), т.е. результирующая сила F , действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i:

Согласно (79.1), F =Q 0 E и F i ,=Q 0 E i , где Е -напряженность результирующего поля, а Е i - напряженность поля, создаваемого зарядом Q i . Подставляя последние выражения в (80.1), получим

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+ Q, -Q ), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя l . Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда

| Q | на плечо l , называется электрическим моментом диполя р или дипольным моментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

Е =Е + + Е - ,

где Е + и Е - - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Е A + - .

Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2<

2. Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где r " - расстояние от точки В до середины плеча диполя. Из подобия равнобед-

ренных треугольников, опирающихся плечо диполя и вектор ев, получим

Е B + l / r ". (80.5)

Подставив в выражение (80.5) значение (80.4), получим

Вектор Е B имеет направление, противоположное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).

Одна из задач, которые ставит электростатика перед собой – это оценка параметров поля при заданном стационарном распределении зарядов в пространстве. И принцип суперпозиции является одним из вариантов решения такой задачи.

Принцип суперпозиции

Предположим наличие трех точечных зарядов, находящихся во взаимодействии друг с другом. При помощи эксперимента возможно осуществить измерение сил, действующих на каждый из зарядов. Для нахождения суммарной силы, с которой на один заряд действуют два других заряда, нужно силы воздействия каждого из этих двух сложить по правилу параллелограмма. При этом логичен вопрос: равны ли друг другу измеряемая сила, которая действует на каждый из зарядов, и совокупность сил со стороны двух иных зарядов, если силы рассчитаны по закону Кулона. Результаты исследований демонстрируют положительный ответ на этот вопрос: действительно, измеряемая сила равна сумме вычисляемых сил согласно закону Кулона со стороны других зарядов. Данное заключение записывается в виде совокупности утверждений и носит название принципа суперпозиции.

Определение 1

Принцип суперпозиции :

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух других точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Принцип суперпозиции полей заряда является одним из фундаментов изучения такого явления, как электричество: значимость его сопоставима с важностью закона Кулона.

В случае, когда речь идет о множестве зарядов N (т.е. нескольких источников поля), суммарную силу, которую испытывает на себе пробный заряд q , можно определить по формуле:

F → = ∑ i = 1 N F i a → ,

где F i a → является силой, с которой влияет на заряд q заряд q i , если прочий N - 1 заряд отсутствует.

При помощи принципа суперпозиции с использованием закона взаимодействия между точечными зарядами существует возможность определить силу взаимодействия между зарядами, присутствующими на теле конечных размеров. С этой целью каждый заряд разбивается на малые заряды d q (будем считать их точечными), которые затем берутся попарно; вычисляется сила взаимодействия и в заключение осуществляется векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Определение 2

Полевая трактовка : напряженность поля двух точечных зарядов есть сумма напряженностей, создаваемым каждым из зарядов при отсутствии другого.

Для общих случаев принцип суперпозиции относительно напряженностей имеет следующую запись:

E → = ∑ E i → ,

где E i → = 1 4 π ε 0 q i ε r i 3 r i → является напряженностью i -го точечного заряда, r i → - радиусом вектора, проложенного от i -го заряда в некоторую точку пространства. Указанная формула говорит нам о том, что напряженность поля любого числа точечных зарядов есть сумма напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Инженерная практика подтверждает соблюдение принципа суперпозиции даже для очень больших напряженностей полей.

Значимым размером напряженности обладают поля в атомах и ядрах (порядка 10 11 - 10 17 В м), но и в этом случае применялся принцип суперпозиции для расчетов энергетических уровней. При этом наблюдалось совпадение результатов расчетов с данными экспериментов с большой точностью.

Все же следует также заметить, что в случае очень малых расстояний (порядка ~ 10 - 15 м) и экстремально сильных полей принцип суперпозиции, вероятно, не выполняется.

Пример 1

Например, на поверхности тяжелых ядер при напряженности порядка ~ 10 22 В м принцип суперпозиции выполняется, а при напряженности 10 20 В м возникают квантово-механические нелинейности взаимодействия.

Когда распределение заряда является непрерывным (т.е. отсутствует необходимость учета дискретности), совокупная напряженность поля задается формулой:

E → = ∫ d E → .

В этой записи интегрирование проводится по области распределения зарядов:

  • при распределении зарядов по линии (τ = d q d l - линейная плотность распределения заряда) интегрирование проводится по линии;
  • при распределении зарядов по поверхности (σ = d q d S - поверхностная плотность распределения) интегрирование проводится по поверхности;
  • при объемном распределении заряда (ρ = d q d V - объемная плотность распределения) интегрирование проводится по объему.

Принцип суперпозиции дает возможность находить E → для любой точки пространства при известном типе пространственного распределения заряда.

Пример 2

Заданы одинаковые точечные заряды q , расположенные в вершинах квадрата со стороной a . Необходимо определить, какая сила воздействует на каждый заряд со стороны других трех зарядов.

Решение

На рисунке 1 проиллюстрируем силы, влияющие на любой из заданных зарядов в вершинах квадрата. Поскольку условием задано, что заряды одинаковы, для иллюстрации возможно выбрать любой из них. Сделаем запись суммирующей силы, влияющей на заряд q 1:

F → = F 12 → + F 14 → + F 13 → .

Силы F 12 → и F 14 → являются равными по модулю, определим их так:

F 13 → = k q 2 2 a 2 .

Рисунок 1

Теперь зададим направление оси О Х (рисунок 1), спроектируем уравнение F → = F 12 → + F 14 → + F 13 → , подставим в него полученные выше модули сил и тогда:

F = 2 k q 2 a 2 · 2 2 + k q 2 2 a 2 = k q 2 a 2 2 2 + 1 2 .

Ответ: сила, оказывающее воздействие на каждый из заданных зарядов, находящихся в вершинах квадрата, равна F = k q 2 a 2 2 2 + 1 2 .

Пример 3

Задан электрический заряд, распределенный равномерно вдоль тонкой нити (с линейной плотностью τ). Необходимо записать выражение, определяющее напряженность поля на расстоянии a от конца нити вдоль ее продолжения. Длина нити – l .

Рисунок 2

Решение

Первым нашим шагом будет выделение на нити точечного заряда d q . Составим для него, в соответствии с законом Кулона, запись, выражающую напряженность электростатического поля:

d E → = k d q r 3 r → .

В заданной точке все векторы напряженности имеют одинаковую направленность вдоль оси ОХ, тогда:

d E x = k d q r 2 = d E .

Условием задачи дано, что заряд имеет равномерное распределение вдоль нити с заданной плотностью, и запишем следующее:

Подставим эту запись в записанное ранее выражение напряженности электростатического поля, проинтегрируем и получим:

E = k ∫ a l + a τ d r r 2 = k τ - 1 r a l + a = k τ l a (l + a) .

Ответ: напряженность поля в указанной точке будет определяться по формуле E = k τ l a (l + a) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Принцип суперпозиции

Допустим, что у нас есть три точечных заряда. Эти заряды взаимодействуют. Можно провести эксперимент и измерить силы, которые действуют на каждый заряд. Для того чтобы найти суммарную силу, с которой на один заряд действует второй и третий, необходимо силы, с которыми действуют каждый из них сложить по правилу параллелограмма. Возникает вопрос, равна ли измеряемая сила, которая действует на каждый из зарядов, сумме сил со стороны двух других, если силы рассчитаны по закону Кулона. Исследования показали, что измеряемая сила равна сумме вычисляемых сил в соответствии с законом Кулона со стороны двух зарядов. Такой эмпирический результат выражается в виде утверждений:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Данное утверждение называется принципом суперпозиции. Этот принцип является одной из основ учения об электричестве. Он так же важен, как и закон Кулона. Его обобщение на случай множества зарядов очевидно. Если имеется несколько источников поля (количество зарядов N), то результирующую силу, действующую на пробный заряд q можно найти как:

\[\overrightarrow{F}=\sum\limits^N_{i=1}{\overrightarrow{F_{ia}}}\left(1\right),\]

где $\overrightarrow{F_{ia}}$ -- сила, с которой действует на заряд q заряд $q_i$ если остальные N-1 заряд отсутствуют.

Принцип суперпозиции (1) позволяет, используя закон взаимодействия между точечными зарядами, вычислить силу взаимодействия между зарядами, находящимися на теле конечных размеров. Для этого необходимо разбить каждый из зарядов на малые заряды dq, которые можно считать точечными, взять из попарно, вычислить силу взаимодействия и провести векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Принцип суперпозиции имеет полевую трактовку: напряженность поля двух точечных зарядов равна сумме напряженностей, которые создаются каждым из зарядов, при отсутствии другого.

В общем случае принцип суперпозиции относительно напряженностей можно записать так:

\[\overrightarrow{E}=\sum{\overrightarrow{E_i}}\left(2\right).\]

где ${\overrightarrow{E}}_i=\frac{1}{4\pi {\varepsilon }_0}\frac{q_i}{\varepsilon r^3_i}\overrightarrow{r_i}\ $- напряжённость i-го точечного заряда, $\overrightarrow{r_i}\ $- радиус-вектор, проведённый от i-го заряда в точку пространства. Выражение (1) означает, что напряженность поля любого числа точечных зарядов равна сумме напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Подтверждено инженерной практикой, что принцип суперпозиции соблюдается вплоть до очень больших напряженностей полей. Очень значительные напряженности имеют поля в атомах и ядрах (порядка ${10}^{11}-{10}^{17}\frac{B}{м}$), но и для них использовали принцип суперпозиции в расчетах энергетических уровней атомов и данные расчетов совпали с данными экспериментов с большой точностью. Однако надо отметить, что при очень малых расстояниях (порядка $\sim {10}^{-15}м$) и экстремально сильных полях принцип суперпозиции, возможно, не выполняется. Так, к примеру, на поверхности тяжелых ядер напряженности достигают порядка $\sim {10}^{22}\frac{В}{м}$ принцип суперпозиции выполняется, но при напряженности ${10}^{20}\frac{В}{м}$ возникают квантово -- механические нелинейности взаимодействия.

Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}-линейная\ плотность\ распределения\ заряда$), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma =\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Принцип суперпозиции в принципе позволяет определить $\overrightarrow{E}$ для любой точки пространства по известному пространственному распределению заряда.

Пример 1

Задание: Одинаковые точечные заряды q находятся в вершинах квадрата со стороной a. Определите, какая сила, действует на каждый заряд со стороны других трех зарядов.

Изобразим силы, действующие на один из зарядов в вершине квадрата (выбор не важен, так как заряды одинаковы) (рис.1). Результирующую силу, действующую на заряд $q_1$, запишем как:

\[\overrightarrow{F}={\overrightarrow{F}}_{12}+{\overrightarrow{F}}_{14}+{\overrightarrow{F}}_{13}\ \left(1.1\right).\]

Силы ${\overrightarrow{F}}_{12}$ и ${\overrightarrow{F}}_{14}$ равны по модулю и могут быть найдены как:

\[\left|{\overrightarrow{F}}_{12}\right|=\left|{\overrightarrow{F}}_{14}\right|=k\frac{q^2}{a^2}\ \left(1.2\right),\]

где $k=9 {10}^9\frac{Нм^2}{{Кл}^2}.$

Модуль силы ${\overrightarrow{F}}_{13}$ найдем, также по закону Кулона, зная, что диагональ квадрата равна:

следовательно, имеем:

\[\left|{\overrightarrow{F}}_{13}\right|=k\frac{q^2}{2a^2}\ \left(1.4\right)\]

Направим ось OX как указано на рис. 1, спроектируем уравнение (1.1), подставим полученные модули сил, получим:

Ответ: Сила, действующая на каждый из зарядов в вершинах квадрата равна: $F=\frac{kq^2}{a^2}\left(\frac{2\sqrt{2}+1}{2}\right).$

Пример 2

Задание: Электрический заряд равномерно распределен вдоль тонкой нити в равномерной линейной плотностью $\tau $. Найдите выражение для напряженности поля на расстоянии $а$ от конца нити на ее продолжении. Длина нити равна $l$.

Выделим на нити точечный заряд $dq$, запишем для него из закона Кулона выражение для напряженности электростатического поля:

В заданной точке все векторы напряженности направлены одинаково, вдоль оси Х, поэтому, имеем:

Так как заряд по условию задачи равномерно распределен по нити с линейной плотностью $\tau $, то можно записать следующее:

Подставим (2.4) в уравнение (2.1), проинтегрируем:

Ответ: Напряженность поля нити в указанной точке вычисляется по формуле: $E=\frac{k\tau l}{a(l+a)}.$