Влияние концентрации реагирующих веществ на скорость химической реакции. Формула скорости химической реакции. Влияние концентрации реагирующих веществ на скорость реакции

Химическая реакция - это превращение одних веществ в другие.

К какому бы типу ни относились химические реакции, они осуществляются с различной скоростью. Например, геохимические превращения в недрах Земли (образование кристаллогидратов, гидролиз солей, синтез или разложение минералов) протекают тысячи, миллионы лет. А такие реакции, как горение пороха, водорода, селитр, бертолетовой соли происходят в течение долей секунд.

Под скоростью химической реакции понимается изменение количеств реагирующих веществ (или продуктов реакции) в единицу времени. Чаще всего используется понятие средней скорости реакции (Δc p) в интервале времени.

v ср = ± ∆C/∆t

Для продуктов ∆С > 0, для исходных веществ -∆С < 0. Наиболее употребляемая единица измерения - моль на литр в секунду (моль/л*с).

Скорость каждой химической реакции зависит от многих факторов: от природы реагирующих веществ, концентрации реагирующих веществ, изменении температуры реакции, степени измельчённости реагирующих веществ, изменении давления, введения в среду реакци катализатора.

Природа реагирующих веществ существенно влияет на скорость химической реакции. В качестве примера рассмотрим взаимодействие некоторых металлов с постоянным компонентом - водой. Определим металлы: Na, Са, Аl ,Аu . Натрий реагирует с водой при обычной температуре очень бурно, с выделением большого количества теплоты.

2Na + 2H 2 O = 2NaOH + H 2 + Q;

Менее энергично при обычной температуре реагирует с водой кальций:

Са + 2Н 2 О = Са(ОН) 2 + H 2 + Q;

Алюминий реагирует с водой уже при повышенной температуре:

2Аl + 6Н 2 О = 2Аl(ОН)з + ЗН 2 - Q;

А золото - один из неактивных металлов, с водой ни при обычной, ни при повышенной температуре не реагирует.

Скорость химической реакции находится в прямой зависимости от концентрации реагирующих веществ . Так, для реакции:

C 2 H 4 + 3O 2 = 2CO 2 + 2Н 2 О;

Выражение скорости реакции имеет вид:

v = k**[О 2 ] 3 ;

Где k - константа скорости химической реакции, численно равная скорости данной реакции при условии, что концентрации реагирующих компонентов равны 1 г/моль; величины [С 2 Н 4 ] и [О 2 ] 3 соответствуют концентрациям реагирующих веществ, возведенные в степень их стехиометрических коэффициентов. Чем больше концентрация [С 2 Н 4 ] или [О 2 ], тем больше в единицу времени соударений молекул данных веществ, следовательно больше скорость химической реакции.

Скорости химических реакций, как правило, находятся также в прямой зависимости от температуры реакции . Естественно, при увеличении температуры кинетическая энергия молекул возрастает, что так же приводит к большим столкновением молекул в единицу времени. Многочисленные опыты показали, что при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза (правило Вант-Гоффа):

где V T 2 - скорость химической реакции при Т 2 ; V ti - скорость химической реакции при T 1 ; g- температурный коэффициент скорости реакции.

Влияние степени измельчённости веществ на скорость реакции так же находится в прямой зависимости. Чем в более мелком состоянии находятся частицы реагирующих веществ, тем в большей степени они соприкасаются друг с другом в единицу времени тем больше скорость химической реакции. Поэтому, как правило, реакции между газообразными веществами или растворами протекают быстрее, чем в твердом состоянии.

Изменение давления оказывает влияние на скорость реакции между веществами, находящимися в газообразном состоянии. Находясь в замкнутом объеме при постоянной температуре реакция протекает со скоростью V 1. Если в данной системе мы повысим давление (следовательно, уменьшим объем), концентрации реагирующих веществ возрастут, увеличится соударение их молекул в единицу времени, скорость реакции повысится до V 2 (v 2 > v 1).

Катализаторы - это вещества, изменяющие скорость химической реакции, но остающиеся неизменными после того, как химическая реакция заканчивается. Влияние катализаторов на скорость реакции называется катализом, Катализаторы могут как ускорять химико-динамический процесс, так и замедлять его. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, то говорят о гомогенном катализе, а при гетерогенном катализе реагирующие вещества и катализатор находятся в разных агрегатных состояниях. Катализатор с реагентами образует промежуточный комплекс. Например, для реакции:

Катализатор (К) образует комплекс с А или В - АК, ВК, который высвобождает К при взаимодействии со свободной частицей А или В:

АК + В = АВ + К

ВК + А = ВА + К;

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Скорость химической реакции равна изменению количества вещества в единицу времени в единице реакционного пространства В зависимости от типа химической реакции (гомогенная или гетерогенная) меняется характер реакционного пространства. Реакционным пространством принято называть область, в которой локализован химический процесс: объем (V), площадь (S).

Реакционным пространством гомогенных реакций является объем, заполненный реагентами. Так как отношение количества вещества к единице объема называется концентрацией (с), то скорость гомогенной реакции равна изменению концентрации исходных веществ или продуктов реакции во времени. Различают среднюю и мгновенную скорости реакции.

Средняя скорость реакции равна:

где с2 и с1 - концентрации исходных веществ в моменты времени t2 и t1.

Знак минус «-» в этом выражении ставится при нахождении скорости через изменение концентрации реагентов (в этом случае Dс < 0, так как со временем концентрации реагентов уменьшаются); концентрации продуктов со временем нарастают, и в этом случае используется знак плюс «+».

Скорость реакции в данный момент времени или мгновенная (истинная)скорость реакции vравна:

Скорость реакции в СИ имеет единицу [моль×м-3×с-1], также используются и другие единицы величины [моль×л-1×с-1], [моль×см-3 ×с-1], [моль×см –З×мин-1].

Скоростью гетерогенной химической реакции v называют, изменение количества реагирующего вещества (Dn) за единицу времени (Dt) на единице площади раздела фаз (S) и определяется по формуле:

или через производную:

Единица скорости гетерогенной реакции - моль/м2 ×с.

Пример 1 . В сосуде смешали хлор и водород. Смесь нагрели. Через 5 с концентрация хлороводорода в сосуде стала равной 0,05 моль/дм3. Определите среднюю скорость образования хлороволорода (моль/дм3 с).

Решение. Определяем изменение концентрации хлороводорода в сосуде через 5 с после начала реакции:

где с2, с1 - конечная и начальная молярная концентрация HСl.

Dс (НСl) = 0,05 - 0 = 0,05 моль/дм3.

Рассчитаем среднюю скорость образования хлороводорода, используя уравнение (3.1):

Ответ: 7 = 0,01 моль/дм3 ×с.

Пример 2. В сосуде объемом 3 дм3 протекает реакция:

C2H2 + 2H2®C2H6.

Исходная масса водорода равна 1 г. Через 2 с после начала реакции масса водорода стала равной 0,4 г. Определите среднюю скорость образования С2Н6 (моль/дм"×с).

Решение. Масса водорода, вступившего в реакцию (mпрор (H2)), равна разнице между исходной массой водорода (mисх (Н2)) и конечной массой непрореагировавшего водорода (тк (Н2)):

тпрор.(Н2)= тисх (Н2)-mк(Н2); тпрор (Н2)= 1-0,4 = 0,6 г.

Рассчитаем количество водорода:

= 0,3 моль.

Определяем количество образовавшегося С2Н6:

По уравнению: из 2 моль Н2 образуется ® 1 моль С2Н6;

По условию: из 0,3 моль Н2 образуется ® х моль С2Н6.

n(С2Н6) = 0,15 моль.

Вычисляем концентрацию образовавшегося С2Н6:

Находим изменение концентрации С2Н6:

0,05-0 = 0,05 моль/дм3. Рассчитаем среднюю скорость образования С2Н6, используя уравнение (3.1):

Ответ: =0,025 моль/дм3 ×с.

Факторы, влияющие на скорость химической реакции . Скорость химической реакции определяется следующими основными факторами:

1) природой реагирующих веществ (энергия активации);

2) концентрацией реагирующих веществ (закон действующих масс);

3) температурой (правило Вант-Гоффа);

4) наличием катализаторов (энергия активации);

5) давлением (реакции с участием газов);

6) степенью измельчения (реакции, протекающие с участием твердых веществ);

7) видом излучения (видимое, УФ, ИК, рентгеновское).

Зависимость скорости химической реакции от концентрации выражается основным законом химической кинетики - законом действующих масс.

Закон действующих масс . В 1865 г. профессор Н. Н. Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции: «... притяжение пропорционально произведению действующих масс». Эта гипотеза нашла подтверждение в законе действия масс, который был установлен в 1867 г. двумя норвежскими химиками К. М. Гульдбергом и П. Вааге. Современная формулировка закона действия масс такова: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степе нях, равных стехиометрическим коэффициентам в уравненш реакции.

Для реакции аА + bВ = тМ + nN кинетическое уравнение за-кона действия масс имеет вид:

, (3.5)

где - скорость реакции;

k - коэффициент пропорциональности, называемый константой скорости химической реакции (при = 1 моль/дм3 k численно равна ); - концентрации реагентов, участвующих в реакции.

Константа скорости химической реакции не зависит от концентрации реагентов, а определяется природой реагирующих веществ и условиями протекания реакций (температурой, наличием катализатора). Для конкретной реакции, протекающей при данных условиях, константа скорости есть величина постоянная.

Пример 3. Написать кинетическое уравнение закона действия масс для реакции:

2NO (г) + С12 (г) = 2NOCl (г).

Решение. Уравнение (3.5) для данной химической реакции имеет:ледующий вид:

.

Для гетерогенных химических реакций в уравнение закона действующих масс входят концентрации только тех веществ, которые находятся в газовой или жидкой фазах. Концентрация вещества, находящегося в твердой фазе, обычно постоянна и входит в константу скорости.

Пример 4. Написать кинетическое уравнение закона действия масс для реакций:

a)4Fe(т) + 3O2(г) = 2Fe2O3(т);

б) СаСОз (т) = СаО (т) + СО2 (г).

Решение. Уравнение (3.5) для данных реакций будет иметь следующий вид:

Поскольку карбонат кальция - твердое вещество, концентрация которого не изменяется в ходе реакции, т. е. в данном случае скорость реакции при определенной температуре постоянна.

Пример 5. Во сколько раз увеличится скорость реакции окисления оксида азота (II) кислородом, если концентрации реагентов увеличить в два раза?

Решение. Записываем уравнение реакции:

2NO + О2= 2NO2.

Обозначим начальные и конечные концентрации реагентов соответственно с1(NO), cl(O2) и c2(NO), c2(O2). Точно так же обозначим начальную и конечную скорости реакций: vt, v2. Тогда, используя уравнение (3.5), получим:

.

По условию с2(NO) = 2c1 (NO), с2(О2) =2с1(О2).

Находим v2 =к2 ×2cl(O2).

Находим, во сколько раз увеличится скорость реакции:

Ответ: в 8 раз.

Влияние давления на скорость химической реакции наиболее существенно для процессов с участием газов. При изменении давления в и раз в п раз уменьшается объем иn раз возрастает концентрация, и наоборот.

Пример 6. Во сколько раз возрастет скорость химической реакции между газообразными веществами, реагирующими по уравнению А + В = С, если увеличить давление в системе в 2 раза?

Решение. Используя уравнение (3.5), выражаем скорость реакции до увеличения давления:

.

Кинетическое уравнение после увеличения давления будет иметь следующий вид:

.

При увеличении давления в 2 раза объем газовой смеси согласно закону Бойля-Мариотта (рУ = const) уменьшится также в 2 раза. Следовательно, концентрация веществ возрастет в 2 раза.

Таким образом, с2(А) = 2c1(A), c2(B) = 2с1{В). Тогда

Определяем, во сколько раз возрастет скорость реакции при увеличении давления.

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

Обычно концентрацию выражают в моль⁄ л, а время - в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль⁄л, а через 4 с. от начала реакции она стала 0,6 моль⁄л, то средняя скорость реакции будет равна (1-0,6) ⁄ 4 = 0,1 моль⁄(л∙с).


Рассмотрим в общем виде скорость реакции, протекающей по уравнению


А + В = С + D (1)


По мере расходования вещества А скорость реакции уменьшается. Отсюда следует, что скорость реакции может быть определена лишь для некоторого промежутка времени.


Так как концентрация вещества А в момент времени t 1 измеряется величиной c 1 , а в момент t 2 - величиной c 2 , то за промежуток времени ∆t = t 2 - t 1 изменение концентрации вещества составит ∆c = c 2 - c 1 , откуда определится средняя скорость реакции (υ)

υ = - (c 2 - c 1 ⁄ t 2 - t 1) = ∆c⁄∆t


Знак минус ставится потому, что, несмотря на убывание концентрации вещества А и, следовательно, на отрицательное значение разности c 2 - c 1, скорость реакции может быть только положительной величиной.


Можно также следить за изменением концентрации одного из продуктов реакции - веществ С или D; она в ходе реакции будет возрастать, и поэтому в правой части уравнения нужно ставить знак плюс.


Поскольку скорость реакции все время изменяется, то в химической кинетике рассматривают только истинную скорость реакции υ , т. е. скорость в данный момент времени.

Факторы, влияющие на скорость химической реакции.

Скорость химической реакции зависит от:


1. природы реагирующих веществ и условий протекания реакции


2. концентрации реагирующих веществ c;


3. температуры t;


4. присутствия катализаторов;


5. а также от некоторых других факторов (например, от давления - для газовых реакций, от измельчения - для твердых веществ, от радиоактивного облучения).

Влияние концентраций реагирующих веществ.

Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующихвеществ.


Отсюда на основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:


скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.


Для реакции (1) этот закон выразится уравнением


υ =k c А∙ c В, или υ =k[А]∙[В] ,


где c А и c В или [А] и [В] - концентрации веществ А и В, моль⁄л;


k - коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.


В общем случае, если в реакцию вступают одновременно т молекул вещества А и n молекул вещества В, т. е.



уравнение скорости реакции имеет вид:


υ = k[А] m ∙[В] n ,


Это уравнение есть математическое выражение закона действующих масс в общем виде.


Из данных уравнений нетрудно установить физический смысл константы скорости k: она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль⁄л или когда их произведение равно единице.


Константа скорости реакции зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.


Основной закон химической кинетики не учитывает реагирующие вещества, находящиеся в твердом состоянии, т. к. их концентрации постоянны и они реагируют лишь на поверхности.


Так, например, для реакции горения угля:


С + О 2 = СО 2


скорость реакции пропорциональна только концентрации кислорода: υ = k[О 2 ].


Влияние температуры. Зависимостьскорости реакции от температуры определяется правилом Вант-Гоффа:
приповышении температуры на каждые 10 ◦ скорость большинства реакцийувеличивается в 2 - 4 раза.


Математически эта зависимость выражается соотношением


V t2 = V t1 γ t2- t 1 ⁄ 10


Где V t1 и V t2 - скорости реакции соответственно при начальной и конечной температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10 ◦ .

Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетики – закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.