Формула фика физиология. Метод артериальной термодилюции. Метод Фика. Реографические методы определения и расчета сердечного выброса

Чрезвычайно важной характеристикой деятельности сердца является его производительность, т.е. ударный и, соответственно, минутный объем крови. Существует значительное количество прямых и расчетных способов определения сердечного выброса. Наиболее точными среди них являются электромагнитная флоуметрия, прямой кислородный метод Фика, ацетиленовый метод Гроллмана, методы разведения индикаторов (изотопов, температуры жидкости, красителей и пр.), называемые иногда по именам исследователей, обосновавших принцип метода - методом Стюарта-Гамильтона.

2.1. Расчет величины сердечного выброса при использовании электромагнитного расходомера

Электромагнитная флоуметрия относится к числу наиболее точных, современных методов оценки сердечного выброса, основанных на регистрации объемной скорости кровотока. Преимущества метода заключаются в возможности непрерывной регистрации и оценки систолического объема, измерении средней и мгновенной объемной скорости кровотока, проведении фазового анализа на протяжении сердечного цикла. Расчет ударного объема крови (УОК) ведется обычно по формуле:

где Ф макс - максимальный кровоток (мл/с), С - наружный диаметр аорты, равный диаметру датчика, п - толщина стенки аорты, равная 0,08 с; 1,66 - эмпирический коэффициент.

При использовании интегратора возможно быстрое, непосредственное определение и минутного объема крови (МОК), либо МОК находят из произведения УОК на ЧСС. Однако метод относится к числу инвазивных, требует, в зависимости от типа датчика (манжеточный, проточный или катетерный), вскрытия грудной клетки и доступа к аорте либо вскрытия просвета крупных артериальных стволов. Вполне очевидно, что не только в клинике, но и в эксперименте эти условия не всегда могут устраивать исследователя. В то же время при наложении манжеточного датчика на сонную артерию (что в эксперименте легко выполнимо) оказывается возможным расчетным путем определить величину МОК по следующей формуле:

где К - поправочный коэффициент, равный 2,1; У - объемная скорость кровотока в сонной артерии; R 1 - радиус аорты (находится по номограмме); R 2 - радиус сонной артерии (находится до исследования в условиях интактной гемодинамики).

2.2. Расчет величины сердечного выброса при использовании методов разведения индикаторов

Принцип применения методов разведения индикаторов заключается в том, что индикатор быстро вводится в вену как можно ближе к правому предсердию (в эксперименте прямо в правое предсердие), после чего непрерывно определяют его содержание в артериальной крови, лучше всего в аорте или ее крупных ветвях (в эксперименте вдуге аорты). Чем скорее появляется и исчезает индикатор из артериальной крови, тем больше величина минутного объема крови. В качестве индикатора обычно применяют коллоидные красители: Т-1824 или синьку Ивенса (молекулярный вес 960,84; пик абсорбции при длине волны около 640 мм); кардиогрин или зелень Фокса; индигокармин; бром-сульфалимин; вафазурин; пофавердин или уивердин; голубую краску Гейги 536 и др. Кроме красок применяют изотопы йод - 431, хром - 51, радиоактивный криптон или ксенон. В последние годы получает все большее применение метод терморазведения, описанный Фиглером в 1954 году и значительно усовершенствованный М.И. Гуревичем с соавт.; А.Д.Смирновым с соавт.; Д.Е.Вальковым и Ю.Н.Цыбиннм и др. В качестве индикатора обычно используется изотонический раствор хлористого натрия комнатной температуры или охлажденный до + 10°С. Метод не дает нежелательного окрашивания крови и тканей организма и позволяет многократное определение величины МОК. Однако для высокой точности измерений требуется катетеризация, поскольку инъекция физиологического раствора желательна непосредственно в правое предсердие, а термодатчик (обычно термистор МТ-54) должен находиться в восходящей части дуги аорты. Эти условия в клинике могут быть выполнены лишь специалистом хирургом, что ограничивает распространение метода.

В экспериментах зонд с термодатчиком вводится в устье аорты через одну из общих артерий, чаще через первую. Однако при этом сонная артерия перекрывается, что неминуемо ведет к изменению функционального состояния барорецепторов каротидного синуса. В этой связи мы используем обычно иной путь введения зонда с термистором - через бедренную (В.В.Брин, 1977) или подкрыльцовую (В.Б.Брин, 1979) артерии. При этом сонные артерии и каротидные синусы остаются интактными. Введение зонда в правое предсердие мы также осуществляем через подкрыльцовую вену.

Принимая во внимание, что методики разведения индикаторов относятся к числу наиболее распространенных прямых способов определения МОК, мы считаем целесообразным привести способы расчета величины МОК по кривым разведения индикаторов.

При использовании красочных индикаторов МОК находится по формуле:

где 1 - скорость введения красителя, мг/мин; С - концентрация красителя в плазме при достижении плато концентрационной кривой, мг/л.

При использовании метода терморазведения МОК находится по формуле:

где v - объем вводимого раствора, мл; (Тк-Тр) - разность температур крови и индикатора, град.С; R - скорость движения диаграммной бумаги, регистрирующей кривую устройства, мм/с; А - площадь, ограниченная кривой терморазведения, мм 2 ; f - чувствительность регистрирующей системы, град/мм; S I d I - соответственно удельная теплоемкость и удельный вес раствора (для физраствора 0,997 и 1,02); S 2 d 2 - удельная теплоемкость и удельный вес крови (0,870 и 1,05).

Как видно из приведенных выше формул вне зависимости от используемого индикатора для расчета величины МОК необходимо определение площади кривой разведения. Нисходящая часть кривой требует коррекции, т.к. она искажена рециркуляцией крови и повторным поступлением индикатора к месту регистрации (рис.1).

Наиболее точным является полулогарифмический метод корригирования кривой с дальнейшей планиметрией или гравиметрией, однако из-за трудоемкости чаще применяют упрощенные методы расчета площади кривой, не требующее такой коррекции.

В физиологических условиях величина минутного объема крови левого желудочка примерно на 1% превышает минутный объем крови правого желудочка за счет поступления небольшого количества крови из бронхиальных вен в легочные и из тебезиевых вен в полость левого желудочка. Поэтому, учитывая такую малую разницу, обычно считают величину сердечного выброса равной для обоих желудочков сердца. Однако в ряде случаев необходимо знать точную величину минутного объема крови раздельно для правого и левого желудочков.

Для определения минутного объема крови правого желудочка в настоящее время обычно используются две группы методов: разведения индикатора и методы, основанные на принципе Фика.

Группа методов разведения, применяемых для определения минутного объема правого желудочка, основана на расчете времени и степени разведения индикатора, вводимого в полость правого желудочка одномоментно или с постоянной скоростью (метод Стюарта-Гамильтона).

При использовании метода терморазведения физиологический раствор вводят непосредственно в полость правого желудочка, синхронизируя момент введения с диастолой (либо в правое предсердие), а регистрация кривой разведения проводится в легочной артерии. Принято считать, что этот метод позволяет наиболее точно определить величину МОК правого желудочка. Формулы расчета МОК для индикаторных методов аналогичны описанным для левого желудочка (21)-(23).

2.3. Расчет величины сердечного выброса при использовании метода Фика и его модификаций

Принцип Фика состоит в том, что количество вещества, поглощенного или ввделенного кровью,прямо пропорционально величине кровотока и разнице между концентрацией этого вещества в притекающей и оттекающей крови. При определении минутного объема крови правого желудочка (МОК пж) анализ производится по насыщению крови кислородом. Следует помнить, что это исследование должно проводиться строго в условиях основного обмена и устойчивого состояния пациента.

При этом определение содержания кислорода в крови, взятой из полости правого желудочка или легочной артерии (PаО 2 об%) и из легочных вен или левого предсердия (РV O 2 o6%), производят на газоанализаторе или кюветном оксигемометре. Потребление кислорода (РО 2 мл/мин) определяют на аппарате Холдена по разнице содержания кислорода в окружающем и в выдыхаемом воздухе. Последний в течение 3 мин собирают в мешок Дугласа. Величина минутного объема крови определяется по формуле:

где РСО 2 - количество углекислого газа в выдыхаемом воздухе; РаСO 2 и PVCO 2 - соответственно содержание СO 2 в крови из легочной артерии и легочных вен.

Представляет интерес и метод определения минутного объема крови по азоту (Ли и Дюбуа в модификации Каплан и Кимбель):

где РN 2 О - количество поглощенного N 2 O; РаN 2 O - средняя концентрация N 2 O в мешке и альвеолах после уравновешивания; 0,47 - растворимость N 2 O в крови, об%.

Вполне очевидно, что методы, основанные на принципе Фика, могут использоваться и для определения выброса левого желудочка.

2.4. Реографические методы определения и расчета сердечного выброса

2.5. Расчет сердечного выброса по формулам

Источник : Брин В.Б., Зонис Б.Я. Физиология системного кровообращения. Формулы и расчеты. Издательство Ростовского университета, 1984. 88 с.

Литература [показать]

  1. Александров А.Л., Гусаров Г.В., Егурнов Н.И., Семенов А.А. Некоторые косвенные методы измерения сердечного выброса и диагностики легочной гимертензии. - В кн.: Проблемы пульмонологии. Л., 1980, вып. 8, с.189.
  2. Амосов Н.М., Лшцук В.А., Пацкина С.А. и др. Саморегуляция сердца. Киев, 1969.
  3. Андреев Л.Б., Андреева Н.Б. Кинетокардиография. Ростов н/Д: Изд-во Рост, у-та, 1971.
  4. Брин В.Б. Фазовая структура систолы левого желудочка при деафферентации синокаротидных рефлексогенных зон у взрослых собак и щенков. - Пат. физиол, и экспер. терап., 1975, №5, с.79.
  5. Брин B.Б. Возрастные особенности реактивности синокаротидного прессорного механизма. - В кн.: Физиология и биохимия онтогенеза. Л., 1977, с.56.
  6. Брин В.Б. Влияние обзидана на системную гемодинамику у собак в онтогенезе. - Фармакол. и токсикол., 1977, №5, с.551.
  7. Брин В.Б. Влияние альфа-адреноблокатора пирроксана на системную гемодинамику при вазоренальной гипертензии у щенков и собак. - Бюл. экспер. биол. и мед., 1978, №6, с.664.
  8. Брин В.Б. Сравнительно-онтогенетический анализ патогенеза артериальных гипертензий. Автореф. на соиск. уч. ст. док. мед. наук, Ростов н/Д, 1979.
  9. Брин В.Б., Зонис Б.Я. Фазовая структура сердечного цикла у собак в постнатальнал отногенезе. - Бюл. экспер. биол. и мед., 1974, №2, с. 15.
  10. Брин В.Б., Зонис Б.Я. Функциональное состояние сердца и гемодинамика малого круга при дыхательной недостаточности. - В кн.: Дыхательная недостаточность в клинике и эксперименте. Тез. докл. Всес. конф. Куйбышев, 1977, с.10.
  11. Брин В.Б., Сааков Б.А., Кравченко А.Н. Изменения системной гемодинамики при экспериментальной реноваскулярной гипертонии у собак разного возраста. Cor et Vasa, Ed.Ross, 1977, т.19, №6, с.411.
  12. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетно-сосудистая дистония. М., 1981.
  13. Гайтон А. Физиология кровообращения. Минутный объем сердца и его регуляция. М., 1969.
  14. Гуревич М.И., Берштейн С.А. Основы гемодинамики. - Киев, 1979.
  15. Гуревич М.И., Берштейн С.А., Голов Д.А. и др. Определение сердечного выброса методом термодилюции. - Физиол. журн. СССР, 1967, т.53, №3, с.350.
  16. Гуревич М.И., Брусиловский Б.М., Цирульников В.А., Дукин Е.А. Количественная оценка величины сердечного выброса реографическим методом. - Врачебное дело, 1976, № 7, с.82.
  17. Гуревич М.И., Фесенко Л.Д., Филиппов М.М. О надежности определения сердечного выброса методом тетраполярной грудной импедансной реографии. - Физиол. журн. СССР, 1978, т.24, № 18, с.840.
  18. Дастан Х.П. Методы исследования гемодинамики у больных гипертензией. - В кн.: Артериальные гипертензии. Материалы советско-американского симпозиума. М., 1980, с.94.
  19. Дембо А.Г., Левина Л.И, Суров Е.Н. Значение определения давления в малом круге кровообращения у спортсменов. - Теория и практика физической культуры, 1971, № 9, с.26.
  20. Душанин С.А., Морев А.Г., Бойчук Г.К. О легочной гипертензии при циррозе печени и определении ее графическими методами. - Врачебное дело, 1972, №1, с.81.
  21. Елизарова Н.А., Битар С., Алиева Г.Э., Цветков А.А. Изучение регионарного кровообращения с помощью импедансометрии. - Терап.архив, 1981, т.53, № 12, с.16.
  22. Заславская P.M. Фармакологические воздействия на легочное кровообращение. М., 1974.
  23. Зернов Н.Г., Кубергер М.Б., Попов А.А. Легочная гипертензия в детском возрасте. М., 1977.
  24. Зонис Б.Я. Фазовая структура сердечного цикла по данным кинетокардиографии у собак в постнатальном онтогенезе. - Журн. эволюцион. биохимии и физиол., 1974, т.10, № 4, с.357.
  25. Зонис Б.Я. Электромеханическая деятельность сердца у собак различного возраста в норме и при развитии реноваскулярной гипертонии, Автореф. дис. на соиск. уч.ст. канд.мед.наук, Махачкала, 1975.
  26. Зонис Б.Я., Брин В.Б. Влияние однократного приема альфа-адренергического блокатора пирроксана на кардио- и гемодинамку у здоровых людей и больных артериальными гипертензиями, - Кардиология, 1979, т.19, № 10, с.102.
  27. Зонис Я.М., Зонис Б.Я. О возможности определения давления в малом круге кровообращения по кинетокардиограмме при хронических заболеваниях легких. - Терап. архив, 4977, т.49, № 6, с.57.
  28. Изаков В.Я., Иткин Г.П., Мархасин B.C. и др. Биомеханика сердечной мышцы. М., 1981.
  29. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965
  30. Кедров А.А. Попытка количественной оценки центрального и периферического кровообращения электрометрическим путем. - Клиническая медицина, 1948, т.26, № 5, с.32.
  31. Кедров А.А. Электроплетизмография как метод объективной оценки кровообращения. Автореф. дис. на соиск. уч. ст. канд. мед. наук, Л., 1949.
  32. Клиническая реография. Под ред. проф. В.Т.Шершнева, Киев, 4977.
  33. Коротков Н.С. К вопросу о методах исследования кровяного давления. - Известия ВМА, 1905, № 9, с.365.
  34. Лазарис Я.А., Серебровская И.А. Легочное кровообращение. М., 1963.
  35. Лериш Р. Воспоминания о моей минувшей жизни. М., 1966.
  36. Мажбич Б.И., Иоффе Л.Д., Замещений М.Е. Клинико-физиологические аспекты регионарной электроплетизмографии легких. Новосибирск, 1974.
  37. Маршалл Р.Д., Шефферд Дж. Функция сердца у здоровых и бальных. М., 1972.
  38. Меерсон Ф.З. Адаптация сердца к большой нагрузке и сердечная недостаточность. М., 1975.
  39. Методы исследования кровообращения. Под общей редакцией проф. Б.И.Ткаченко. Л., 1976.
  40. Мойбенко А.А., Повжитков М.М., Бутенко Г.М. Цитотоксические повреждения сердца и кардиогенный шок. Киев, 1977.
  41. Мухарлямов Н.М. Легочное сердце. М., 1973.
  42. Мухарлямов Н.М., Сазонова Л.Н., Пушкарь Ю.Т. Исследование периферического кровообращения с помощью автоматизированной окклюзионной плетизмографии, - Терап. архив, 1981, т.53, № 12, с.3.
  43. Оранский И.Е, Акселерационная кинетокардиография. М., 1973.
  44. Орлов В.В. Плетизмография. М.-Л., 1961.
  45. Осколкова М.К., Красина Г.А. Реография в педиатрии. М., 1980.
  46. Парин В.В., Меерсон Ф.З. Очерки клинической физиологии кровообращения. М., 1960.
  47. Парин В.В. Патологическая физиология малого круга кровообращения В кн.: Руководство по патологической, физиологии. М., 1966, т.3, с. 265.
  48. Петросян Ю.С. Катетеризация сердца при ревматических пороках. М., 1969.
  49. Повжитков М.М. Рефлекторная регуляция гемодинамики. Киев, 1175.
  50. Пушкарь Ю.Т., Большов В.М., Елизаров Н.А. и др. Определение сердечного выброса методом тетраполярной грудной реографии его метрологические возможности. - Кардиологии, 1977, т.17, №17, с.85.
  51. Радионов Ю.А. Об исследовании гемодинамики методом разведения красителя. - Кардиология, 1966, т.6, №6, с.85.
  52. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. Л., 1974.
  53. Сазонова Л.Н., Больнов В.М., Максимов Д.Г. и др. Современные методы изучения в клинике состояния резистивных и емкостных сосудов. -Терап. архив, 1979, т.51, №5, с.46.
  54. Сахаров M.П., Орлова Ц.Р., Васильева А.В., Трубецкой А.З. Два компонента сократимости желудочков сердца и их определение на основе неинвазивной методики. - Кардиология, 1980, т.10, №9, с.91.
  55. Селезнев С.А.., Вашетина С.М., Мазуркевич Г.С. Комплексная оценка кровообращения в экспериментальной патологии. Л., 1976.
  56. Сывороткин М.Н. Об оценке сократительной функции миокарда. - Кардиология, 1963, т.З, №5, с.40.
  57. Тищенко М.И. Биофизические и метрологические основы интегральных методов определения ударного объема крови человека. Автореф. дис. на соиск. уч. ст. докт. мед. наук, М., 1971.
  58. Тищенко М.И., Сеплен М.А., Судакова З.В. Дыхательные изменения ударного объема левого желудочка здорового человека. - Физиол. журн. СССР, 1973, т.59, №3, с.459.
  59. Тумановекий М.Н., Сафонов К.Д. Функциональная диагностика заболеваний сердца. М., 1964.
  60. Уигерс К. Динамика кровообращения. М., 1957.
  61. Фельдман С.Б. Оценка сократительной функции миокарда по длительности фаз систолы. М., 1965.
  62. Физиология кровообращения. Физиология сердца. (Руководство по физиологии), Л., 1980.
  63. Фолков Б., Нил Э. Кровообращение. М., 1976.
  64. Шершевский Б.М. Кровообращение в малом круге. М., 1970.
  65. Шестаков Н.М. 0 сложности и недостатках современных методов определения объема циркулирующей крови и о возможности более простого и быстрого метода его определения. - Терап. архив, 1977, №3, с.115. И.устер Л.А., Бордюженко И.И. О роли компонентов формулы определения ударного объема крови методом интегральной реографии тела. -Терап. зрхив, 1978, т.50, ?4, с.87.
  66. Agress С.M., Wegnes S., Frement В.P. et al. Measurement of strolce volume by the vbecy. Aerospace Med., 1967, Dec, p.1248
  67. Blumberger K. Die Untersuchung der Dinamik des Herzens bein Menshen. Ergebn.Med., 1942, Bd.62, S.424.
  68. Bromser P., Hanke С. Die physikalische Bestimiung des Schlagvolumes der Herzens. - Z.Kreislaufforsch., 1933, Bd.25, № I, S.II.
  69. Burstin L. -Determination of pressure in the pulmonary by external graphic recordings. -Brit.Heart J., 1967, v.26, p.396.
  70. Eddleman E.E., Wilis K., Reeves T.J., Harrison Т.К. The kinetocardiogram. I. Method of recording precardial movements. -Circulation, 1953, v.8, p.269
  71. Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. -Quart.J.Exp.Physiol., 1954, v.39, P.153
  72. Fick A. Über die ilessung des Blutquantums in den Herzventrikeln. Sitzungsbericht der Würzburg: Physiologisch-medizinischer Gesellschaft, 1970, S.36
  73. Frank M.J., Levinson G.E. An index of the contractile state of the myocardium in man. -J.Clin.Invest., 1968, v.47, p.1615
  74. Hamilton W.F. The physiology of the cardiac output. -Circulation, 1953, v.8, p.527
  75. Hamilton W.F., Riley R.L. Comparison of the Fick and dye-dilution method of measurement the cardiac output in man. -Amer.J. Physiol., 1948, v.153, p.309
  76. Kubicek W.G., Patterson R.P.,Witsoe D.A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. -Ann.N.Y.Acad. Sci., 1970, v.170, p.724.
  77. Landry A.B.,Goodyex A.V.N. Hate of rise left ventricular pressure. Indirect measurement and physiologic significance. -Acer. J.Cardiol., 1965, v.15, p.660.
  78. Levine H.J., McIntyre K.M., Lipana J.G., Qing O.H.L. Force-velocity relations in failing and nonfailing hearts of subjects with aortic stenosis. -Amer.J.Med.Sci., 1970, v.259, P.79
  79. Mason D.T. Usefulness and limitation of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of iqyocardial contractility in man. -Amer.J.Cardiol., 1969, v.23, P.516
  80. Mason D.T., Spann J.F., Zelis R. Quantification of the contractile state of the intact human heat. -Amer.J.Cardiol., 1970, v.26, p. 248
  81. Riva-Rocci S. Un nuovo sfigmomanometro. -Gas.Med.di Turino, 1896, v.50, №51, s.981.
  82. Ross J., Sobel В.E. Regulation of cardiac contraction. -Amer. Rev.Physiol., 1972, v.34, p.47
  83. Sakai A.,Iwasaka T., Tauda N. et al. Evaluation of the determination by impedance cardiography. -Soi et Techn.Biomed., 1976, NI, p.104
  84. Sarnoff S.J.,Mitchell J.H. The regulation of the performence of the heart. -Amer.J.Med.,1961, v.30, p.747
  85. Siegel J.H., Sonnenblick E.Н. Isometric Time-tension relationship as an index of ocardial contractility. -Girculat.Res., 1963, v.12, р.597
  86. Starr J. Studies made by simulating systole at necropsy. -Circulation, 1954, v.9, p.648
  87. Veragut P., Krayenbuhl H.P. Estimation and quantification of myocardial contractility in the closed-chest dog. -Cardiologia (Basel), 1965, v.47, № 2, p.96
  88. Wezler K., Böger A. Der Feststellung und Beurteilung der Flastizitat zentraler und peripherer Arterien am Lebenden. -Schmied.Arch., 1936, Bd.180, S.381.
  89. Wezler K., Böger A. Über einen Weg zur Bestimmung des absoluten Schlagvolumens der Herzens beim Menschen auf Grund der Windkesseltheorie und seine experimentalle Prafung. -N.Schmied. Arch., 1937, Bd.184, S.482.
Оглавление темы "Вентиляция легких. Перфузия легких кровью.":
1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.
2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.
3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.
4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.

6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.
7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.
8. Углекислый газ. Транспорт углекислого газа.
9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..
10. Регуляция дыхания. Регуляция вентиляции легких.

Диффузия газов через альвеолярную мембрану происходит между альвеолярным воздухом и венозной, а также артериальной кровью легочных капилляров. В табл. 10.2 приведены стандартные величины напряжения дыхательных газов в артериальной и венозной крови легочных капилляров.

Таблица 10.2. Напряжение дыхательных газов в артериальной и венозной крови легочных капилляров

Градиенты парциального давления кислорода и углекислого газа обусловливают процесс пассивной диффузии через альвеолярную мембрану кислорода из альвеол в венозную кровь (градиент 60 мм рт. ст.), а углекислого газа - из венозной крови в альвеолы (градиент 6 мм рт. ст.). Парциальное давление азота по обе стороны альвеолярной мембраны остается постоянным, поскольку этот газ не потребляется и не продуцируется тканями организма. При этом сумма парциального давления всех газов, растворенных в тканях организма, меньше, чем величина атмосферного давления, благодаря чему газы в тканях не находятся в газообразной форме. Если величина атмосферного давления будет меньше, чем парциальное давление газов в тканях и в крови, то газы начинают выделяться из крови в виде пузырьков, вызывая тяжелые нарушения в кровоснабжении тканей организма (кессонная болезнь).

Скорость диффузии 02 и С02 в легких

Скорость диффузии (M/t) кислорода и углекислого газа через альвеолярную мембрану количественно характеризуется законом диффузии Фика . Согласно этому закону газообмен (M/t) в легких прямо пропорционален градиенту (ДР) концентрации 02 и С02 по обе стороны от альвеолярной мембраны, площади ее поверхности (S), коэффициентам (к) растворимости 02 и С02 в биологических средах альвеолярной мембраны и обратно пропорционален толщине альвеолярной мембраны (L), а также молекулярной массе газов (М). Формула этой зависимости имеет следующий вид:

Структура легких образует максимальное по величине поле для диффузии газов через альвеолярную стенку, которая имеет минимальную толщину (рис. 10.16). Так, количество альвеол в одном легком человека приблизительно равно 300 млн. Суммарная площадь альвеолярной мембраны, через которую происходит обмен газов между альвеолярным воздухом и венозной кровью, имеет огромные размеры (порядка 100 м2), а толщина альвеолярной мембраны составляет лишь - 0,3-2,0 мкм.

В обычных условиях диффузия газов через альвеолярную мембрану происходит в течение очень короткого отрезка времени (не более 3/4 с), пока кровь проходит через капилляры легких. Даже при физической работе, когда эритроциты проходят капилляры легкого в среднем за 1/4 с, указанные выше структурные особенности альвеолярной мембраны создают оптимальные условия для формирования равновесия парциальных давлений 02 и С02 между альвеолярным воздухом и кровью капилляров легких (рис. 10.17). В уравнении Фика константы диффузии (к) пропорциональны растворимости газа в альвеолярной мембране. Углекислый газ имеет примерно в 20 раз большую растворимость в альвеолярной мембране, чем кислород. Поэтому, несмотря на существенное различие в градиентах парциальных давлений 02 и С02 по обе стороны от альвеолярной мембраны, диффузия этих газов совершается за очень короткий отрезок времени движения эритроцитов крови через легочные капилляры.


Рис. 10.16. Диффузия газов через альвеолярную мембрану . Диффузия газов в легких осуществляется по градиентам концентрации 02 и С02 между альвеолярным пространством и кровью капилляров легких, которые разделены альвеолярной мембраной. При этом диффузия тем эффективнее, чем тоньше альвеолярная мембрана и области контакта альвеолоцитов и эндотелиоцитов. Поэтому альвеолярная мембрана образована уплощенными частями альвеолоцитов I порядка (0,2 мкм) и эндотелиоцитов капилляров легких (0, 2 мкм), между которыми находится тонкая общая базальная мембрана (0,1 мкм) этих клеток. В состав мембраны входит также мономолекулярный слой сурфактант а. Мембрана эритроцитов является препятствием для диффузии газов в легких.

Газообмен через альвеолярную мембрану количественно оценивается диффузионной способностью легких, которая измеряется количеством газа (мл), проходящего через эту мембрану за 1 мин при разнице давления газа по обе стороны мембраны в 1 мм рт. ст.


Рис. 10.17. Градиенты парциального давления дыхательных газов в смешанной венозной крови легочной артерии, альвеолярном воздухе и артериальной крови . Равновесие парциальных давлений углекислого газа и кислорода между альвеолярным воздухом и кровью легочных капилляров достигается в течение короткого времени (1/4-3/4 с) движения плазмы крови и эритроцитов в капиллярах легких.

Наибольшее сопротивление диффузии 02 в легких создают альвеолярная мембрана и мембрана эритроцитов, в меньшей степени - плазма крови в капиллярах. У взрослого человека в покое диффузионная способность легких 02 равна 20-25 мл мин-1 мм рт. ст.-1. С02, как полярная молекула (0=С=0), диффундирует через указанные мембраны чрезвычайно быстро, благодаря высокой растворимости этого газа в альвеолярной мембране Диффузионная способность легких С02 равна 400-450 мл мин-1 мм рт. ст.-1.

Катетеризация полостей сердца выполняется с помощью пункции и чрескожного введения катетера в сосуд - периферическую вену (локтевая, подключичная, югулярная, бедренная) для правых отделов сердца или артерию (плечевая, бедренная, аксиллярпая, лучевая) для левых отделов сердца.

, , , , , , , ,

Методика проведения катетеризации полостей сердца

Метод термодилюции

При этом методе используется охлажденный изотонический раствор натрия хлорида (5-10 мл), который вводят по многопросветному катетеру в правое предсердие, кончик катетера с термистором находится в легочной артерии. Калибровку кривых осуществляют кратковременным включением постоянного сопротивления, которое дает отклонения регистрирующего устройства, соответствующие определенному для данного термистора изменению температуры. Большинство приборов для термодилюции снабжено аналоговыми вычислительными устройствами. Современная аппаратура позволяет производить до 3 измерений МО крови в течение 1 мин и многократно повторять исследования. Сердечный выброс, или МО, определяется по следующей формуле: МО = V (Т1 - Т2) х 60 х 1,08 / S (л/мин),

где V - объем введенного индикатора; Т1 - температура крови; Т2 - температура индикатора; S - площадь под кривой разведения; 1,08 - коэффициент, зависящий от удельной плотности и теплоемкости крови и изотонического раствора натрия хлорида.

Достоинства термодилюции, а также потребность катетеризации только венозного русла делают этот метод в настоящее время наиболее приемлемым для определения сердечного выброса в клинической практике.

Некоторые технические аспекты работы катетеризационной лаборатории

Персонал катетеризационной ангиографической лаборатории включает заведующего, врачей, операционный средний медперсонал и рентгенотехников (рентгенолаборантов), если применяется кинорентгено- и крупноформатная съемка. Влабораго риях, испол ьзующих только видеофильмы и компьютерную запись изображения, рентгенолаборанты не нужны. Все сотрудники лаборатории должны владеть приемами сердечно-легочной реанимации, для чего в рентгеновском операционном кабинете должны быть соответствующие медикаменты, дефибриллятор, приспособление для электрической стимуляции сердца с набором электрод-катетеров, центральная подача кислорода и (желательно) аппарат для искусственной вентиляции: легких.

Сложные и рискованные диагностические процедуры и ЧКВ (ангиопластика, стентирование, атерэктомия и др.) желательно проводить в клиниках, где есть кардиохирургическая бригада. Согласно рекомендации The American College of Cardiology/American Heart Association, ангиопластика и обследование пациентов с высоким риском осложнений, ОИМ могут выполняться опытными, квалифицированными специалистами без наличия в госпитале кардиохирургической поддержки, если пациент не может быть транспортирован в более подходящее место без дополнительного риска. В Европе и некоторых других странах (в частности, и в России) все чаще выполняют эндоваскулярные вмешательства без наличия кардиохирургов, так как потребность в экстренном кардиохирургическом пособии в настоящее время крайне низка. Достаточно договоренности с какой-либо расположенной поблизости клиникой сердечно-сосудистой хирургии для экстренного перевода туда больного в случае возникновения пери- и постпроцедурных осложнений.

Для поддержания формы, квалификации и мастерства операторов в лаборатории в год должно выполняться не менее 300 процедур, а каждый врач должен делать в год не менее 150 диагностических процедур. Для катетеризации и ангиографии необходимы высокоразрешающая рентгеноангиографическая установка, система для мониторирования ЭКГ и внутрисосудистого давления, архивирования и обработки ангиографических изображений, стерильный инструментарий и различные виды катетеров (разные типы катетеров для коронарной ангиографии описаны ниже). Ангиографическая установка должна быть оборудована приставкой для киноангиографического или цифрового компьютерного получения изображения и архивирования, иметь возможность получения изображения в режиме онлайн, т. е. сразу с количественным компьютерным анализом ангиограмм.

Изменения кривых внутриполостного давления

Кривые внутриполостного давления могут изменяться при различных патологических состояниях. Эти измене-ния служат для диагностики при обследовании пациентов с разнообразной патологией сердца.

Чтобы понимать причины изменения давления в полостях сердца, необходимо иметь представление о временных взаимоотношениях между механическими и электрическими процессами, происходящими в течение сердечного цикла. Амплитуда а-волны в правом предсердии выше амплитуды у-волны. Превышение у-волны над а-волной в кривой давления из правого предсердия говорит о нарушении заполнения предсердия во время систолы желудочков, что бывает при недостаточности трикуспидального клапана или дефекте

При стенозе трикуспидального клапана кривая давления в правом предсердии напоминает таковую в левом предсердии при стенозе митрального клапана или констриктивном перикардите, когда в середине и конце диастолы появляется снижение и плато, типичные для повышенного давления во время ранней систолы. Среднее давление в левом предсердии достаточно точно соответствует давлению заклинивания легочной артерии и диастолическому давлению в легочном стволе. При недостаточности митрального клапана без стеноза происходит быстрое снижение давления во время начала систолы (снижение у-волны), а затем постепенное повышение его в позднюю диастолу (диастаз). Это отражает достижение равновесия давления в предсердии и желудочке в позднюю фазу желудочкового наполнения. Напротив, у пациентов с митральным стенозом снижение у-волны происходит медленно, при этом давление в левом предсердии продолжает снижаться на протяжении всей диастолы, а признаков диастаза пульсового давления в левом предсердии нет, так как сохраняется атриовентрикулярный градиент давления. Если митральный стеноз сопровождается нормальным синусовым ритмом, го а-волна в левом предсердии сохраняется и сокращение предсердий обусловливает создание большого градиента давления. У больных с изолированной митральной регургитацией v-вoлнa четко выражена и имеет отвесное нисходящее колено у-линии.

На кривой левожелудочкового давления точка КДД непосредственно предшествует началу его изометрическо го сокращения и располагается сразу после а-волны перед с-волной левопредсердного давления. КДД левого желудочка может повышаться в следующих случаях: сердечной недостаточности, если желудочек испытывает большую нагрузку, вызванную избыточным притоком крови, например при аортальной или митральной недостаточности; гипертрофия левого желудочка, сопровождающаяся снижением его растяжимости, эластичности и податливости; рестриктивная кардиомиопатия; констриктивный перикардит; тампонада сердца, вызванная перикардиальным выпотом.

При стенозе аортального клапана, который сопровождается затрудненным оттоком крови из левого желудочка и повышением в нем давления по сравнению с систолическим давлением в аорте, т. е. появлением градиента давления, левожелудочковая кривая.давления напоминает кривую давления во время изометрического сокращения. Ее очертания более симметричны, а максимальное давление развивается позже, чем у здоровых лиц. Похожая картина наблюдается и при записи давления в правый желудочек у пациентов со стенозом легочной артерии. Кривые АД также могут различаться у больных со стенозом устья аорты различного типа. Так, при клапанном стенозе наблюдается медленное и отсроченное повышение волны артериального пульса, а при гипертрофической кардиомиопатии начальное резкое повышение давления сменяется его быстрым снижением и затем вторичной положительной волной, отражающей обструкцию во время систолы.

Производные показатели внутрижелудочкового давления

Скорость изменения/повышения кривой внутрижслудочкового давления во время фазы изоволюмического сокращения называют первой производной - dр/dt. Раньше ее использовали для оценки сократимости миокарда желудочков. Величина dр/dt и вторая производная - dр/dt/р - рассчитываются по кривой внутрижелудочкового давления с использованием электронной и компьютерной техники. Максимальные значения этих показателей представляют собой индексы скорости сокращения желудочка и помогают оцепить сократимость и инотропный статус сердца. К сожалению, большой разброс этих показателей у разных категорий больных не позволяет разработать какие-либо усредненные нормативы, но они вполне применимы у одного больного с исходными данными и на фоне применения препаратов, улучшающих сократительпую функцию сердечной мышцы.

В настоящее время, имея в арсенале обследования пациентов такие методы, как ЭхоКГ в различных ее модификациях, компьютерная (КТ), электронно-лучевая и магнитно-резонансная томография (МРТ), столь важного значения, как ранее, эти показатели для диагностики кардиальных патологий не имеют.

В экспериментах на животных удается канюлировать аорту, легочную артерию, крупные вены, впадающие в сердце, и измерить сердечный выброс с помощью электромагнитного или ультразвукового флоуметра.

У больных сердечный выброс , за редким исключением, измеряют непрямыми методами, не требующими хирургического вмешательства. Двумя широко распространенными методами являются метод Фика и метод разведения индикатора.

На рисунке представлена кривая кровотока , зарегистрированная у собаки в начальной части аорты с помощью электромагнитного флоуметра. На рисунке видно, что кровоток быстро нарастает до максимума во время систолы, а затем в конце систолы на долю секунды меняет направление на противоположное. Этот обратный ток крови закрывает аортальные клапаны, затем возвращается к нулевому уровню.

Измерение сердечного выброса методом Фика

Рисунок объясняет принцип метода Фика. На рисунке показано, что протекающая в легочных сосудах кровь поглощает 200 мл кислорода за 1 мин. Видно также, что венозная кровь, поступающая в правую половину сердца, содержит 160 мл кислорода на 1 л крови, в то время как артериальная кровь, покидающая левую половину сердца, содержит 200 мл кислорода на 1 л крови. Используя эти данные, можно рассчитать, что каждый литр крови, протекая через легочные сосуды, поглощает 40 мл кислорода.

Общее количество кислорода , поглощенного кровью в легких за минуту, равно 200 мл, и разделив 200 мл на 40, определим, сколько литров крови должно пройти через легкие, чтобы поглотить данное количество кислорода. Итак, количество крови, протекающее через легкие за 1 мин, равно 5 л, что и составляет величину сердечного выброса. Сердечный выброс можно рассчитать по формуле:

Сердечный выброс (л/мин) = О2, поглощенный легкими (мл/мин)/ Артериально-венозная разница О2 (мл/л крови).

Используя метод Фика для определения сердечного выброса у человека, необходимо взять пробу смешанной венозной крови из правого желудочка. Для этого зонд вводят в плечевую вену и продвигают его через подключичную вену в правое предсердие, а затем в правый желудочек или легочную артерию. Пробу артериальной крови можно взять из любой артерии большого круга кровообращения. Скорость поглощения кислорода в легких можно определить по уменьшению количества кислорода в выдыхаемом воздухе с помощью любого оксиметра.

Измерение сердечного выброса методом разведения индикатора

Для измерения сердечного выброса методом разведения индикатора небольшое количество индикатора, например красителя, вводят в крупную вену большого круга кровообращения или в правое предсердие. Индикатор быстро проходит из правой половины сердца в легочные сосуды, затем попадает в левую половину сердца, а из них - в артериальную систему. Концентрацию красителя определяют, пока кровь проходит через одну из периферических артерий, а затем строят кривую. В каждом из приведенных примеров 5 мл красителя трикабоцианина зеленого (Cardio-Green) было введено в момент времени «О».

В верхней части рисунка видно, что в течение 3 сек после инъекции краситель в артериальном сосуде не появлялся, а затем концентрация его быстро нарастала до максимума в течение 6-7 сек. После этого концентрация быстро снижалась, но прежде чем она упала до нуля, началась повторная циркуляция красителя с током крови. Концентрация красителя опять начала нарастать. Для правильного расчета необходимо экстраполировать нисходящую часть первой кривой до нулевого уровня, как показано на рисунке пунктирной линией. Таким способом экстраполированная кривая изменения концентрации за период времени до рециркуляции красителя дает точный результат в своей первой части и приблизительный - в заключительной.

Получив экстраполированную кривую «концентрация-время », можно рассчитать среднюю концентрацию красителя в артериальной крови за весь период времени. Площадь кривой соответствует площади прямоугольника, выделенного на рисунке розовым цветом. При этом средняя концентрация красителя равна 0,25 мг/дл, а продолжительность тока крови, содержащей краситель, - 12 сек. Поскольку общее количество индикатора, введенного в кровоток в начале исследования, равно 5 мг, нетрудно рассчитать, что за 12 сек через артерию протекало 2 л крови, что соответствует сердечному выбросу 10 л/мин.

Работы, посвященные методу артериальной термодилюции , основываются на недостатках метода терморазведения, выполняемого посредством катетеризации легочной артерии. Помимо осложнений, связанных с этой процедурой, их авторы указывают на возможность получения недостоверных результатов измерения СВ. В частности, Jullien Т. и соавт. (1995), используя контрастную эхокардиографию и доплерографию, показали, что ИВЛ может приводить к выраженной недостаточности трикуспидального клапана и возникающий при этом обратный ток крови существенно искажает результаты измерения СВ.

Положительное давление в грудной клетке во время вдоха при проведении аппаратного дыхания также может сказываться на результатах измерения СВ, показатель которого зависит от того, в какую фазу дыхательного цикла производится инъекция индикатора.

Основан на анализе изменений температуры артериальной крови. Индикатор (охлажденный изотонический раствор) вводят в центральный венозный катетер, а кривую терморазведения регистрируют с помощью термодилюционного катетера (4F), введенного в бедренную или плечевую артерию.

Метод артериальной термодилюции может применяться в режиме непрерывного измерения СВ. При этом, в отличие от доступа через легочную артерию, нет необходимости в использовании специального дорогостоящего катетера. После измерения СВ методом артериальной термодилюции полученные данные ударного выброса принимают за базовый уровень. В дальнейшем значения СВ вычисляют исходя из результатов математической обработки кривой артериального давления и базового значения УВ. В исследовании A. Perel (1998) при сопоставлении результатов, полученных на основе непрерывного измерения СВ, с термодилюционным методом коэффициент линейной корреляции составил 0,95.

Несмотря на справедливость замечаний, высказываемых авторами метода артериальной термодилюции , вряд ли его можно признать менее инвазивным, чем термодилюционный метод, осуществляемый с помощью установки катетера Свана-Ганса. В этой связи оба метода применимы у наиболее тяжелой категории пациентов, требующих помимо проведения инфузионно-трансфузионной терапии применения вазоактивных и кардиотонических препаратов.

Метод Фика

Метод разработан и описан A. Fick в 1870 году, который в качестве индикатора предложил использовать кислород. Для измерения СВ определяют количество кислорода, поглощаемое из воздуха за определенный отрезок времени. Одновременно берут пробы артериальной и смешанной венозной, взятой из устья легочной артерии, крови и определяют в них содержание кислорода. При этом необходимо определить разницу в содержании кислорода в артериальной и венозной крови, то есть измерить количество кислорода, которое связывается каждым кубическим сантиметром крови во время ее прохождения через легкие. Сердечный выброс вычисляют по формуле:
СВ = П02 / (Са02 -Св02),

где СВ - сердечный выброс, л/мин (фактически - количество крови, проходящей через малый круг кровообращения); П02 - потребление кислорода, мл/мин, Са02 - содержание кислорода в артериальной, а Св02 - в венозной крови, мл/л.

Потребление кислорода определяют с помощью спирометра, а артериовенозную разницу по кислороду оценивают, анализируя содержание кислорода в одной из магистральных артерий и легочной артерии.

Поскольку принцип Фика , как любой из методов, основанных на разведении индикатора, подразумевает его равномерное смешивание с кровью, на время проведения исследования необходимо соблюдение следующих условий:
стабильное состояние дыхания и кровообращения в момент исследования;
анализ содержания кислорода должен проводиться только в смешанной венозной крови, взятой из ствола легочной артерии, где сходятся все венозные сосудистые пути;
с помощью прямого принципа Фика нельзя определять СВ при наличии внутрисердечных сбросов крови, поскольку в данном случае часть крови минует малый круг кровообращения.

Несмотря на то что прямой метод определения сердечного выброса по Фику - один из самых точных, в отделениях интенсивной терапии и реанимации он применяется сравнительно редко. Это обусловлено необходимостью сравнительно сложного и дорогостоящего оборудования для оценки потребления кислорода. Вместе с тем в условиях проведения искусственной вентиляции легких эта задача облегчается при использовании современных метаболических мониторов, позволяющих определять содержание кислорода и углекислого газа в контуре вдоха и выдоха. Показатель V02 вычисляют, умножив разницу содержания кислорода на вдохе и выдохе на величину минутного объема дыхания. В настоящее время имеются аппараты ИВЛ со встроенным метаболическим монитором, в которых помимо других параметров осуществляется постоянное измерение V02.

Для получения смешанной венозной крови необходима катетеризация легочной артерии. Связанные с этим проблемы описаны в разделе, посвященном методу терморазведения. Для этих целей можно использовать плавающий катетер с баллоном на конце типа Pulmobal, однако в клинической практике чаще используются термодилюционные катетеры Свана-Ганса, которые от предыдущих отличает наличие встроенного термистора. Поскольку при установленном катетере в легочную артерию СВ проще определить с помощью метода терморазведения, метод Фика может быть оставлен для случаев, когда отсутствует или неисправен регистратор (термодилютор).